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Chapter 1
INTRODUCTION

The electromagnetic scattering from a subclass of superquadric surfaces,
specifically two-dimensional, perfectly conducting superelliptic cylinders is
treated. Scattering may be defined as ‘he modification of the electromag-
netic radiation fields due to the presence of complex geometries.

Computer modeling is an active area of high-frequency electromagnetic
research. It concerns iiself with the construction of efficient computer pro-
grams to calculate values for the various antenna and radar cross-section
parameters of complex antennas and scatterers. Some of these computer
codes [14],[15] are capable of modeling quite complicated antennas and scat-
terers such as reflectors, ships, aircraft, spacecraft and many other actual
structures.

The purpose of this report is to extend the scope of computer modeling
codes to include superquadric shapes in order to represent complex geome-
tries by a new class of analytic functions. Superquadrics show great promise
of providing researchers and engineers with a powerful family of parametric

shapes for geometrical modeling. One of the main problem areas today in




modeling is the lack of a unified mathematical formalism and specification
language for geometrical objects. By providing modelers with the fa-ility to
generate a wide variety of shapes from a small number of intuitive parame-
ters, superquadrics may prove to be a step in the right direction toward the
needed mathematical basis. Since superquadrics allow complex surfaces to
be generated and modified easily and interactively, there is also hope that
they would integrate naturally with an evolving specification language for
geometrical objects.

This report, then, represents a small step in examining the potential of

these surfaces for this purpose.




Chapter 2

THEORETICAL
BACKGROUND

2.1 Introduction

The solutions of electromagnetic problems consist of solutions to Maxwell’s
equations and the equation of continuity, together with appropriate bound-
ary conditions. There are three high-frequency techniques of particular
interest here, Physical Optics (PO), Geometrical Optics (GO) and the Uni-
form (Geometrical) Theory of Diffraction (UTD).

2.2 Geometrical Optics (GO)

Geometrical Optics is an approximate technique tha’ can be used to rep-
resent radiated, reflected, and refracted fields. GO can be derived via an
asymptotic series ( Luneburg-Kline) solution of the Maxwell’s equations; the
leading term of the series is the GO field.

The GO field is discontinuous across a shadow boundary. Its amplitude

is governed by the conservation of energy in a ray tube as it travels along

3




the ray path. The phase is proportional to the length of the ray path, and

ray tubes are defined by surfaces normal to the ray path through which the

flow of power is a corstant. GO fails when the energy of a ray tube must

pass through a point or line. Such points and lines are called caustics, a.ud

they signal the attempt by GO to represent the flow of a finite amount of

power through a vanishing area. In two dimensions, the GO reflected field

is

where

H:(f{) = +H:(Qr) .

EL(7) = ~EX(Q)- [ =E e

(pm +57)
P ik

reflection point

incident E, field at Q,
incident H, field at Q,
distance from @, to source
distance from @Q, to receiver

caustic distance for the reflected ray
1 2

—_— + B S

p R(Q,)cost

ceustic distance for the incident ray

angle of incidence = cos™ (-5 - #)

principal radius of surface curvature at Q,.

normal to the surface at Q,

tangent to the surface at Q,

4
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5 = direction of the incident ray
= direction of the reflected ray
= direction of the source

# = direction of the receiver

as can be seen in Figure 2.1. The direction of the reflected ray is defined

Y axis )
To Receiver r

=

n '

Figure 2.1: Geometry for the GO Reflected Field




by the law of reflection and is
Ad =8 (2.3)

The point of reflection, Q,, is a point on the surface such that the law of

reflection is satisfied. For far field scattering from @,, it - 7 = 7 . ¥

2.3 The Physical Optics Procedure (PO)

The currents induced on a general scatterer are unknown. If the true cur-
rents were known, then exact field values could be calculated using the
radiation integrals [9). Physical Optics is a procedure where unknown cur-
rents are approximated by equivalent currents based on the incident G.O.
fields. The equivalence theorem allows replacement of the original scatter-
ing geometry and the actual surface currents by e uivalent surface currents
flowing in free space. These approximate G.O. currents are then used to
calculate the scattered fields. The currents induced on the surface of a
perfect electric conductor arc assumed to be

> { 27 x HY, in the Lit region (2.4)

o= 0, in the Shadow region-
where 71 is the unit normal to the surface.

Physical Optics is useful because the form of the assumed currents is
simple and the resulting integrals lend themselves to either numerical or
asymptotic (high-frequency) analysis. It is not possible to rigorously state
the conditions of validity of PO, but several guidelines may be employed
when determining its validity in a given problem. In general, whenever the

assumed currents are not a good approximation to the actual currents then

6




PO will be invalid somewhere. For example, in a bistatic scattering con-
figuration where currents in a shadow region contribute significantly to the
total field, the physical optics approximation is no longer accurate. Another
source of error in the PO formulation is the assumed termination of G.O.
currents on the scatterer surface. Since the actual equivalent currents do
not end abruptly, evaluation of the PO integral yields contributions from
the endpoints of integration which are nonphysical. When these spurious
current termination contributions can be identified and removed, the PO
result becomes more accurate. Care must be exercised however when de-
termining whether a term is a false current termination or the result of a
bona-fide discontinuity with physical causes.

When PO is a good approximation, and if the stationary phase condition
is applicable, then a recovery of the GO result is possible from PO. Because
PO is a spatial integration of surface fields, it produces bounded results in
situations where the conditions required for a valid GO result do not hold.
This ability of PO to treat scattering not possible with GO suggests that it
represents a viable and useful format for many problems. This is the main

reason that PO was chosen to characterize the scattering from superquadric

surfaces.

2.4 Uniform Theory of Diffraction (UTD)

The Uniform Theory of Diffraction [10] is a uniform version of the Geomet-
rical Theory of Diffraction. The GTD is an extension of Geometrical Optics
that postulates the existence of “diffracted rays”. Recall that the GO field is




discontinuous. Since actual fields must be continuous, then diffracted fields
are generated that eliminate this discontinuity. These diffracted fields are
added to the GO fields, i.e., Uga = Ugo + Uair.. The postulates of GTD are

very similar to those of GO.

1) The ray paths may be found as a generalization of Fermat’s principle-
diffraction points occur at places such that the total ray path is an

extremum.

2) Diffraction like reflection and transmission is a local phenomenon at

high frequencies.

3) For a diffracted ray, power is conserved in a tube of rays and the phase
of the diffracted field is proportional to the length of the traversed

ray.
Generally, a UTD solution is:
e accurate
o valid at reflection and shadow boundaries and in the shadow region

o valid for an incident ray optical field with arbitrary wavefront curva-

ture

e computationally efficient.
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Chapter 3

SUPERQUADRIC
SURFACES AND THEIR
PROPERTIES

Superquadric surfaces are generalizations of the quadric surfaces. The def-
inition of a quadric surface is the locus of all points (z,y, z) that satisfy the

equation
Az’ + By’ +C2* + Dry + Ezz+ Fyz+ Gz + Hy+ Jz+ K =0 (3.1)

for arbitrary constants A,B,C,D,E,F,G,H,J and K. In two dimensions,

Equation 3.1 is
Az’ + By* + Dzy+ Gz + Hy+ K = 0. (3.2)

Examples of quadric surfaces include the ellipsoid, the hyperboloid of one
sheet, the hyperboloid of two sheets, the elliptic paraboloid, the hyperbolic
paraboloid, the elliptic cone, and the quadric cylinder. Superquadrics do

not satisfy Equations 3.1 and 3.2 except for certain special cases. For our




purpose, we restrict our attention to closed superelliptic and superellip-
soidal surfaces.

The transition from quadrics to superquadrics is accomplished by al-
lowing the exponential powers of x, y and z in Equation 3.1 to take on
arbitrary values. The difficulty of raising negative numbers to fractional
powers is resolved through the careful application of absolute value signs
and sign functions. The proper combination of absolute value signs and
sign functions ensures that a closed quadric surface generalizes to a closed
superquadric.

To illustrate, consider the equation of a quadric ellipsoid in rectangular

coordinates that meets the x, y and z axes at +a, 16 and +c.

'+ )= o

It is useful to write the surface equations in parametric form so that v and

v are the principal directions of the surface. The position vector is then
¥ =&a-sinu cosv + $b-sinu sinv + Zc - cosu (3.4)

where

0<u<w7w and 0<v<2r (3.5)

A normal to the surface is given by

~

.ginucosv + y -sinusinv +

b

z

n= ~ - conu. (3.6)

8l&

Generalizing the quadratic exponent in Equation 3.3 and taking note of

the proper absolute values, we obtain the equation for a superellipsoid in

10




rectangular coordinates,

z |y Vx]w/m z¥
- = -~ =1 3.7
[ a + b + c (3.7)
for which the components in parametric form are
z = a-|sinu?* . |cosv|**) . sign [sinu cosv]
y = b-|sinu|®*) . |sinv|?**) . sign [sinu sinv)
z = c-|cosu|? .sign [cosu]. (3.8)

Note that in three dimensions the superellipsoid can have two different
“squareness” parameters v, and v, applied to the principal directions u
and v. Note also that the sign[] function restores the proper sign removed
by the absolute value operators. For brevity, the use of absolute values is

dropped in presenting the normal to the surface of the superellipsoid,

= %(sin u)* " (cosv)* MM 4 -g-(sin u)?> " (sinv)? MM 4 é(cos u)?M,
(3.9)
Equations 3.8 and 3.9 along with similar expressions for superhyperboloids
are presented in [2].
A second parametric form for the surface vector #{u,v) which satisfies
a quasi-superelliptic equation

V2

Z =1 (3.10)

a

1 4% y"!
+|b| +

F
c

similar to Equation 3.7 is given by

a - cos ¥ (sin p)**/*1) .
[((cos )" + (sin$)"") ((cos )" + (sin p))]'/*

e, ¥) = &

11




. b sin 4 (sin )2/
T Y (cosd)™ + (in )™ ((cos )™ + (simp) )T
5 c- cos.go _ (3.11)
(cos )™ + (sing) ]

where ¢ and ¢ are used in place of u and v to indicate the alternate pa-

rameterization. This equation does not generate the same class of surfaces
as Equation 3.7, but it is presented here as yet another generalization of
Equation 3.1 with possible value in surface modelling. For two-dimensional

curves generated in the x-y plane, they are equivalent.

3.1 The 2-D Superquadric Cylinder

In this section the equations related to the superquadric cylinder are given.
The two-dimensional equation for the surface of the superquadric cylinder

shown in Figure 3.1 is

sy =5

a

Y (3.12)

V+‘Z
b

As a parametric function of t where —~1 < ¢t < 41, the surface may be

written as
#(t) = X(t)z + Y(t)y (3.13)

where
X(t) = xa(1=1tf)*, Y(t)=bt. (3.14)

The normal and tangent vectors to such a surface are

ax,v) = L _ & X% - sign (X) +ga* V|V - sign (V) (.15)
’ IVl \/gzup(l?(v—l) +a,,,|y|2(v«1)
' 12




<)
=
-
3

N

Y(t)
|/ :
a - X(t) —= -
b

"

Figure 3.1: Various superellipses of v = 2,3,10.

) iy (Y1) L 3 1Y D . g
i(X,Y) =5 x5 = 22 7 "g’:((ygwb | ',( T X) (3.16)
b | X7 4 o2 |V
so that
#(t) = taa(1 — |¢) +iby (3.17)
and (1-1/v) (v-1)
a(t) = +2b(1 — |t|”) + galit] sign (t) (3.18)

Jb’(l _ |tIV)2(l—l/v) + a? 't‘2(v~—1)

13




Using the first angular parameterization,

# = da |cosv[*") . sign (cos v) + §b |sin v|*/*) . sign (sin v) (3.19)

(o) = bz |cos v|®*") . sign (cos v) + af [sin v[*"** . sign (sinv) (3.20)
\/b’ |cos vlz(z’z/") + a? |sin v)z(’_zl")

Note that the parameter v is not the same as the angle ¢ seen in Figure

3.1. The connection between the angle ¢ and parameter v is

a (v/2)
v = arctan [(—5 tan ¢) } (3.21)
b (2/v)
¢ = arctan - (tanv) . (3.22)
In the second angular parameterization, the relation between ¥ and ¢
is
¥ = arctan [% tan ¢] (3.23)
b
¢ = arctan [; tan 11)} (3.24)
where
) - nedibnd )
(lcos |” + |sin 9{")
and
. £b|cosp|” ! - sign(cos¥) + ja [sin[*"! - sign (sin
a(y) = Zblcos¥l gn (cos ) + ga sin | gu(sinyg) (3.4

\/b’(cos 1/)|’(V—1) + a? |sin ;bl’("'l)
For a plane parametric curve of the form of Equation 3.13, the radius

of curvature is given by

X + ]
B8) = ey — v

(3.27)

14




Thus the radius of curvature for the superquadric cylinder is

R.($) = (a® sin ¢ + b cos ¢’”“’)(3/2)
¢) = (v — 1) (ab)*-1)(cos ¢ sin #)(*~2)((a sin ¢)* + (bcos ¢)*)(1+1/v)’
(3.28)

and

Rc _ (az sin ¢3v-2 + b! coB w!v-z)(a/,)
W= ab(v — 1) (cos ¢ sin )~ 2)(sin §* + cosy*)(1+1/4)”

(3.29)

Note that if v equals anything other than exactly 2, the denominator of
Equation 3.29 vanishes at ¢ = nn/2, n = 0,+1,12. Equation 3.29 is
plotted in Figure 3.2. This is equivalent to a local zero in the curvature at
the poles of the cylinder. The zero in curvature produces a “cusp” behavior
at the poles seen in Figure 3.3. This cusp in curvature is the source of the

singularity when using GO to calculate the reflected fields.
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Figure 3.3: Superellipse curvature cusp with for v = 2.0, 2.1.
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Chapter 4

GO AND PO SCATTERED
FIELDS

This chapter presents the GO and PO formulations for the scattered fields
from a superelliptic cylinder. By applying UTD concepts, the total scatter-
ing from the superellipse is seen to be composed of several mechanisms. As
a minimum these include a reflected ray and a creeping wave around the
back. Since the mechanism of interest here is the reflected ray, the other

possible mechanisms are left as suggestions for further investigation.

4.1 The GO Reflected Field

For the superellipse geometry shown in Figure 2.1, the relevant parameters

are
L7 ! (;{T) 'y
$ = arctan({—;tan (0;0)’ - sign {tan (O;b)])(&l)
[ cos @ + 7 sin ¢}
9 = (lasin g + |bcos @)/ (42)
ENQ,) = E,e (4.3)
18




Hi(Q.) = Hpe ™ (4.4)
R(Q,) = (ab)(*-*)(a? sin ¢2"_2 + b% cos ¢2"")(3/2) (45)

7 (v =1)(cos ¢sin ¢)*-D((asin )’ + (bcos ¢) Y 1+1/x) M

1 .

pe = ERC(Q,)cos ¢ {4.6)
A £b" |cos $|" ! - sign (cos ¢) + §o¥ |sin $|* " - sign (sin ¢)4 7

= {4.

\/b"’[cos d,"(v-l) + a® |sin ¢|’(v—l)
o= pe abcos ¢ . (4.8)
(lasin @)’ + |bcos p]*) "
S o= po . abcosd - (4.9)
(lasin@|” + |bcos ¢|")
) = zcosd' + jsind (4.10)
p = &cosh + Gsinb (4.11)
§F = —p (4.12)
P (4.13)
The far-field GO solution for H](+) is therefore
—jk{r'+r) | i
B = oo TR (414
T

with ¢, R.(¢) and ' given by Equations 4.1, 4.5 and 2.3. As is clear from
the form of R. (Equation 4.5, Figure 3.2), the solution produces infinite
fields at the zero-curvature points of the superellipse. This is clearly a
failure of GO. The full nature and reason for the failure is not clear from

Equation 4.14, but becomes evident from Figure 3.2 when ¢ = (0,n7/2).
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4.2 The PO Scattered Field

For an arbitrary 2-D surface, the PO formulation for the TE scattered field

H' is
2, _ [k e 7 2\ ik(78)
g = \/8" = /Cm (Jo(7) x 3) ™ a (4.15)

where

p = Distance from the origin to the field point
T = z&+yy
3 = Zcosf + ysind
L) = 20 x B
B(7) = 2D - 5 pik(zcor8’ +ysind’)
df{ = Line integration element,

as shown in Figure 4.1. Let the variable of integraticn be the parameter ¢.

Then

) = #a(l — )" + gt (4.16)
75 = a(l- Itlu)llvcoso*!-btsine (4.17)
. —sa (=Y g ¢ sror pava(1-1/v)
iy = —2eltl” sien(t) +gb(1 — ti) (4.15)
VB — A1) o g3 g1
(7 x5 = 2HYRRx 2) x § = ~2HI(F)(E x 3) (4.19)
= 2zeik(zconttyind) (4.20)
(asindlt* Y sigat + beond(1
VoL — 0T 4 g e |
3P0 g2y — Y 21-1/v)
d = ﬁ i - .,(1_1/! D dt. (4.22)
(L=e7y="
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Figure 4.1: Geometry for the PO Scattered Field from the Superellipse

The PO integral for the scattered H) field is then

& e-i* 41 [ gin @t si
H = Jke?? / [asmOItl (:‘_I;S/n)t +bc050] P
Var 75 Jo [T — ey

% ejk(a(x-;q")‘/"(m 8+cos8')+be(sin 8+sin 8)) dt (4.23)

which may also be written as
. :iﬁ e"jhp 1
B = Vor /5 .[r
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asinf (
(

-a sin @ ((

t

1-—- tu)"/")
¢

1 - tv)(ll")

(v-1)
) —bcos@

{v-1)
) + bcosf

};,.

ejk(a(l—-t“ ) {¥(cos B+con ') —be(sinf+sin 0’))

ejk(a(l —t*)/¥(cos 8+ cos ' )+ bt(sin 8 +sin 8’))

(4.24)
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Chapter 5

HIGH FREQUENCY

ASYMPTOTIC

EVALUATION OF THE PO

INTEGRAL

5.1 Introduction

The Method of Steepest Descents is a general procedure for obtaining ap-

proximations to integrals with a large parameter k of the form

I(k) = L f2)e P dz. (5.1)

The key to the approximation is that significant contributions to the inte-

gral will arise only trom those parts of the path P that are local maxima

(saddle points) of Re{q(z)} and the endpoints of P. Contributions from

the rest of the path will be exponentially smaller and may be neglected.

The theory of steepest descent analysis is well developed and fully treated

in [3,6].
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A related method, the Method of Stationary Phase is applicable to
integrals of the form

I(k) = L ':’ f(z)e™®) do (5.2)

where again k is the large parameter. The method of stationary phase is
based on the principle that rapidly fluctuating oscillatory functions tend to
cancel under integration. Significant contributions to the integral will arise
where there is a “stationary” point or a local cessation of oscillation. Note
that while Equation 5.2 is a special case of Equation 5.1, the Method of
Stationary Phase is not a special case of the Method of Steepest Descents.
This is true because the contours of integration and the analyticity require-
ments are not the same for the two methods. Both methods yield the same
result for the leading asymptotic term if the contour of one is continuously
deformable into the contour of the other without encountering any singu-
larities or branch points. A good discussion of the stationary phase method

is found in [3,11].

5.2 Topology of the PO Integral

Although Equation 5.3 is a stationary phase integral, it will be evaluated
by the method of steepest descents. The first step of an SDP analysis
is to examine the structure of the integrand in the z-plane. Writing the

stationary phase integral 4.24 in the form of Equation 5.1,

ik e—ike
H:=\/§ 7 - I(k) (5.3)

|
_



where
I8) = L) + (k) = [ £+ [ f)emdz (5.4)

and

z

(v-1)
a*————)—ﬁ;) + bcos @ (5.5)
— 2Y

f(z) = -asind (

z

(v-1)
.f:(z) = +asiné ((1—-"”—)-17;) + bcos 8 (5.6)
-z

q(2) = j (a(l — 2*)"* (cos 8 + cos ') — bz (sin 8 + sin 0’)) (5.7)
2.(z) = j(a(l —2*)"/" (cos8 + cos ') + bz (sind + sin#')). (5.8)

The structure of the integrands in Equation 5.4 is shown in Figure 5.1. The
original contour of integration is along the positive real axis from 0 to 1.

The functions g, ,(z) have branch points at the v roots of unity located at

e, n=041,4+2-v. (5.9)

The associated branch cuts follow the contours of Re{q(z)} = 0 so that
subsequent coniour deformations remain on the same Riemann sheet. In
order to select the proper canonical integral, the behavior of q(z) near the
origin is of interest. The origin, in the z-plane, is where the multiple saddle

points are situated. In the neighborhood of the origin,

14

q..(z)=j (a, (cos@ + cos@') (1 - —z;-) F bz (sin 8 + sin 9')). (5.10)

For both I; and I, there will be (v — 1) saddle points (z,,, for I and z,,,
for I, j=1,2,3 -.-v — 1) that coalesce on the endpoint of integration at

the origin. This is the primary contribution to the integral. The physical

25




Branch .
points s

\

\\\\\\\\

\\\\

(Jngwmﬂ
contour|

Figure 5.1: z-plane structure of q for v = 6.

meaning of the endpoint of P at z = 1 is a contribution due to the false
termination currents of the PO approximation, and its effect on I(k) will

be ignored by deforming the original contour away from this point into the

valley region shown in Figure 5.1.
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5.3 Backscattered Field from the Curvature
Cusp (the Pole)

For the special case of backscatter from the pole (6 = 8’ = 0), Equations
5.3 through 5.8 simplify to

Ik) = 2L(k) = 2L(k) = 2 ]01 £ (2)e*o ) dy (5.11)
fu(s) = b (5.12)
0.(z) = j2a(1 - z*)"". (5.13)

It is desired to approximate the structure of 5.13 near the saddle point
z, = 0 with a simplified exponential structure which can be integrated in

closed form. In the neighborhood of the origin,
. z¥
g(z) = 2_1a(1 - -;-) (5.14)

For a transformation scheme, we have

) = 2f faeds =2 [ 0t g (525
~ 2 /ooo G,(8)e*™() ds = 2bei*?e ‘[-)m g—j— . e " d45.16)
where
Gla) =  FAT (517)
ds
4,(z) = 1.(8) = ¢,(2.) — 8¥ = j2a — &". (5.18)

Equation 5.18 defines the transformation from the z-plane to the s-plane.
The deformation of the contour from the upper limit of 1 in the z-plane

to oo in the s-plane is justified on physical grounds. It causes the PO
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termination currents to be excluded from the approximation. Expanding

Equation 5.18 in a power series about z, = 0,

qc(rV)(z') = —2ja.(u - 1)! (519)
dz :anx [ —v! ]llv
dz\ | vl (5.20)
d«B =0 q(()y)(z')
1nx v 1/v
— i ¥ .
) [2:'«:] (521

where the choice of n = 0,1,2:--(v — 1) is determined by the path leading
away from z,. From Figure 5.1 the appropriate choice for the arg of the

steepest descent path is

.=o) =5 (5.22)

hence n = 0. The canonical integral used in Equation 5.15 is given in terms

dz
arg (:l_a-

of the gamma function and is

i ()
-/o e da—ukl/vI‘ - (5.23)

The resulting expression for I(k) is

1fv V
~ v kg (ze) l) 1
I(k) ~ 2 [ 2jka] f(2.)e*ter (u . (5.24)
26, /1 v W .
_ = = —_ jkla—j
T v r (v) [Zka] ¢ ) (5.25)

The reflected field from the pole of a superellipse (§ = 8 = 0) given by

Equation 5.3 becomes

= V5 (l) {_‘i_]w e ihta-id
H, = 2r v r v/ (2ka VP € " (5.26)
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When v = 2, the superellipse becomes a regular ellipse and Equation

5.26 reduces to

PrI L
2a /p

which is the well-known result for the backscattered field from a 2-D elliptic

et (5.27)

cylinder. When v — o0, the superellipse becomes a box centered at the

origin with width 2b and depth 2a. In this case, Equation 5.26 reduces to

j_k_ e—jkp ejk!a
2r \/p

which agrees with the PO result for the broadside backscatter from a strip

H:=2b (5.28)

of width 2b displaced along the x-axis by a. While the analysis is carried
out for integer values of v, comparison with numerical results shows that

Equation 5.26 remains valid for all real values of v between 2 and oo.
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5.4 Reflected Field Near and Far from the

Pole for v =3

The analysis for the case when v = 3 is based on the asymptotic expansion

found in [7] which describes the arbitrary configuration of two simple saddle

points situated near an integration end point. To find the saddle points we

set the derivative of Equation 5.10 equal to zero. Then,

dz
or for I,
24
-(1 - z.3)1/31
and for I,
zl
(1~ 2,2)"°]

d . '
—q,,(2) =7 (—a(cosﬂ + cos §’) a

2

- 23)2/3

1? _ b(sinf+sin®')

" a(cosf + cosb')

1>, b(sin@ +sind’)

a(cos 8 + cos8')

so that the saddle points for I, are located at

I XG0 A

T | wcon (52)] — [pein (55)]
=+ pon () )"

"7 | facos ()] + [pain (552)) "

and those for I; are located at

L [bsi:/ Sﬁ)ﬁ),a/z 3/2-1/3

[ocos (452)]™  [poin (252)]™
o = 4 [bsin (g%g:) i 17

" T 7 | [acos (S)]7 + pain (52)]"
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F b(sin 8 + sin 0’)) =0

(5.29)

(5.30)

(5.31)

(5.32)

(5.33)

(5.34)

(5.35)




The asymmetry in the saddle point locations would cause great complica-
tions in the analysis. For relatively small values of (6 + ¢’)/2, however, the
saddle points may be approximated by

[bsin (252)]* e
2, = T 7 (5.36)
[a co8 (i;—")} / + {bsin (-9-'%9—')]
z, = +jlz| (5.37)
2, = —jlal (5.38)
Zy = - lzll (539)
z; = +lzl. (5.40)

For larger 4,8', the saddle points are widely separated and the inaccuracy
of the above assumption diminishes exponentially. Because of symmetry of

Equations 5.37 through 5.40, the following relations hold true.

fi(zn) = fi(212) = fa(zn) = fa(2322) (5.41)
2

= bcosd + asinfd (a—:—::aTlla—)) (5.42)

q;'(zn) = -q;'(zn) = J"I:'(zn) = -—jq:'(zu) (5.43)

= 2jd(C080 + cos 0’) ((1—:—;55'3—')-(—5—/;)') . (544)

The integrals I; and I, are treated separately, though the strategy of anal-
ysis is the same for both. If

L(k) = /‘mv fo(2)et D dz = /.oo' G,(s)e*™ () ds r=1,2 (545)

re

where the functions g,(2) have two first-order saddle points at z_,, then

the asymptotic expansion of I,(k) valid uniformly as z, — 2, — z,, and
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as k — oo is given [7] by
kﬂr(l
I(k) ~ = [Hf("rl) + H,(8,3)] %1,—3&4(831’5”3, kl/a"ru)
ek“ro
+ [H,(s,l) - H,.(a,.,)} -k—zl—a*‘;—l-

o = (14 ) o) (1 ) 2o}

LIS 2 3 2

G2k, ks,

ek‘fr(‘ro)
(el — o7,)

where the transformation from the z-plane to the s-plane is

r=1,2 (5.46)

@(x) = n(e)=a,+m -7 (5.47)
qr(zra) = Tr("ra) (548)
a, — ’:1',‘[%(21)4‘91-(22)] (5.49)
3 1/3
\/n_‘r = [Z (Qr(zl) - Qr(zz))] = 851 = —32 (550)
and
dz

H.(s) = fr(z)z (5.51)
iz' = ql?(:f"rl ) = hrl,f! (552)

dz' " 83 — 52 '
% = ——-—;1’(‘:";“ (5.53)
Culth) = gz [ (5.54)
G.(¢,8) = _Cf_%_@ (5.55)

The function G; is expressible in terms of the Incomplete Airy Functions
given in Appendix A. To apply this approximation to Iy, the proper branch
of \/n; must be selected. This means first choosing m such that
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Figure 5.2: Map of Re[q, ,(2)] for 2;; = 212 = 2,.

dz —2 ]° 2 l”“ iy ime
ds|_, [ﬂz_)] Z'qm(z) e8I, m=0,£1,42 (5.56)
=0 1 ’ 1 LY

agrees with the arg of the SDP of Figure 5.2. The indicated choiceism =0
so that arg(hy,)|,_, must equal —%. This then determines the choice of

branch for /7 since it must be consistent with Equation 5.52. Then

1/2

l onl/? S
ST n=0 41,42 (5.57)

— 4N
|¢"(211)

hu
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so that

e it = tial3-2n), (5.58)

This equation is satisfied for n = 2 so that

m’? = |m|?et¥ (5.59)

m o= |mle’¥ (5.60)
1/2 1/2

hyy = hig= q"?;u) -5%, (5.61)

From Equations 5.37, 5.38 and 5.48, s,, ~ 0 and using A.28, A.31 and
A.37 Equation 5.46 becomes

ekan

Li(k) ~ w[fi(z11)h11 + fi(212)h13) kmeifc; (Wll kﬁla,o)
ek .
+ m{fi(zu1)hu — fi(212)h1a] kl,an:/ze—J%G‘I ("M k*2, 0)
eka(®) fi(z11)hn + fi(z12)h12 £(0)
F k { 2m B q{(O)} ) (5.62)

Substituting Equations 5.37 through 5.40 into Equations 5.5 through 5.8

and making use of Equation 5.61, Equation 5.62 reduces to

ghao T 2/3
Lk) ~ 2rfi(zn)huge’dGi (Iml #°,0)

(0 [ (2 )by f1(0)]
p [ m a0 .

When 5 # 0, the saddle points for I, are situated as shown in Figure 5.3.

+

Turning attention now to I, the proper choice of arg(,/7;) must again

be made and m must be selected so that

dz _2 13 9 |M3 .
ds = 1 am(z) = AL M - .
ds|,_q [ﬂ"(z.)l e TEHTT m=10,11,42 (5.64)

q)"(z.)
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Figure 5.3: Contours of Integration and Map of Relg,(2)] for z1; # z;3.

agrees with the arg of the SDP of Figure 5.4. The indicated choiceis m =0
so that arg(ha;)|,.o = —%. The choice of branch for \/7; is then

2 1/2 1/2
hay = q?: ) STIBHN, n = 0,41,42 (5.65)
1
so that
e—j* - e“‘i(l“"). (5.66)
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This equation is satisfied for n = —1 so that
m? = |ml'?e I (5.67)
m o= —lnle ¥ (5.68)
nx/z 1/2
h = Ry = L e it 5.69
A PU P (5.59

This results in

ORIGINAL '
PATH ,

Figure 5.4: Contours of Integration and Map of Relg,(z)]




Ii(k) ~ w[fa(za1)har + fa(222)haa) kl/:leJ Gx( |m{k’/3,0)
+ m[fa(2z21)har — fa(222)haa) l/3’7,/,6 -iig (-— Ina| K313, 0)

+ k() [fz(zn)hn + fz(zzz)hzz _ fz(O)}
k 2n, g:(0)
which using Equations 5.37 through 5.40 and Equations 5.5 through 5.8
and 5.69 simplifies to

(5.70)

kag .
L(k) ~ 2nfa(z)hagise 61 (- Iml67°,0)

eka(©) [fz(zn)hn _ fz(o)] . (5.71)
k 72 ﬁ(o)
Forming the sum of I; and I, leads to further simplifications. Using
7.(0) = ¢(0) (5.72)
q,(0) = —gq(0) (5.73)
m = —nm (5.74)
hu = hy (5.75)

with Equation 5.41 results in

I(k) = 5L(k)+ Ir(k)

~ 2ﬂf3(132)h32 kilaej* X

x [G1 (+ m| #/%,0) + G (~ ma| ¥°,0)]  (5.76)

or
1/2
e"*(‘:(‘l)"‘ﬁg(")) X

1 2
x|Gi (+ Imlk”’, 0) +G; (~Iml&*,0)].  (5.77)

I(k) ~ 2mrfy(z,)
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While Equation 5.77 is complete, it is not in the best form for comparison
to the (singular) first-order stationary phase result. By rearranging the
solution so that the first-order stationary phase solution is a visible factor,
insight may be gained about the nature of the corrected solution. The usual
first order isolated saddle-point solution for this cylinder is

Ik) ~ f(z) k—,;%&ﬂe"’"""""’*- (5.78)

Using Equation 5.49, Equation 5.77 may be rewritten as

I(k) ~ [fz(z.) —2"—8*1%('-)!-1‘:"} x T(nk*3)  (5.79)

k|g(z)|

where
T(z) = [2\/‘;ejf |z|1/4 e-idlel’” (K_F(-;- lz|,0) + Ai*(— |z} ,O))k5.80)
2/3
1 = [Flatra) - a(-2)] (5.81)

and the Airy Functions are as described in Appendix A.

From the above equations, it is seen that the analysis for the two first-
order coalescing saddle points results in a form that can be written as the
first-order stationary phase evaluation multiplied by a function T. This
function acts as a correction to the singular first-order result. Functions
of this kind in UTD are called Transition Functions. Since it is known
that the GO result agrees with the first-order stationary phase evaluation
for the reflected field far away from the pole, it is anticipated that the
transition function T'(z) is the desired multiplicative correction to GO. The

expected behavior of the transition function T(z) then for large argument
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is magnitude of unity and a phase of zero. This is seen in Figure 5.5.
For small argument z, T'(z) should approach zero in such a way that the
product of T(z) and the infinite GO term result in a finite and accurate
limiting value for the field at the pole. The large argument form of the
Incomplete Airy Function is given in Appendix A. Thus for z > 0,

T(z) ~ |2/meit lzl‘"e"’*"'m(( - )+ ( et elwz))]

2rjz 2rjz  2x\ jz'/2
= 1. (5.82)

For z =~ 0,

ix/6 ~j=/6
~ ,* 1/4 [ € - et 1
T(=) ~ 2vmertel ( 27 (3)3=/3 2r F(s ETE
2 T(}) .

= 5;,—3—\/(-%-%’% |2[*/* ~ 1.453677/13 |z /4 (5.83)
For (0+6') ~ 0, Ecuations 4.1 and 4.5 show that the order of the singularity
of ./p. is

B o [0+ 8RS (5.84)

For v = 3, this is O(z~'/%). The behavior of ¢ for (0+0’) ~0isnpox[0+6]
Then the behavior of T'(nk*?) is

T(nk**) o [0 + )4, (5.85)

Since this is a zero of order O(z*'/%), then the GO singularity is indeed

cancelled.
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Figure 5.5: The Transition Function T'(z).
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5.5 The Uniform GO (UGO) Solution for

v=3

The total corrected GO expression for the reflected field from a superelliptic
cylider with v = 3 is then

p )
e~ IMe'+P) sagcosgi

"
H(p) = Hor/pe VP —e Geanaisiocon o)'7* » T(nk?/?)  (5.86)

where, using Equations 5.81, 5.10 and 5.36,
2/3

2cos (’—;ﬂ)

n = bsin ( 2 ) 3/2 3/2
((acon (452))™ + (bsin (45£))™")
and ¢, 8, p. and T(z) are given by Equations 4.1, 2.3, 4.6 and 5.80.
For small (8 + 6')/2, n behaves like
b VRN
N~ 2*/3_ tan (—-—-—-—; ) . (5.88)

a

(5.87)

1/3

The angular region where the pure GO result is invalid may be determined
via Equation 5.87. When nk?/® > 10, then T(nk?/3) ~ 1. When nk*/® < 3.5,
then T'(nk?/?) begins to make significant corrections to the GO result. A
subjective criterion for a significant departure from the GO result (resulting
in a greater than .04 dB deviation) is 7k%/® < 5.

The numerical results UGO, GO, PO, and the Method of Moments are
presented in Chapter 6.

5.6 Reflected Field Behavior for v # 3

The correction to the GO solution takes the form of a two-parameter mul-

tiplicative transition function T(z,r) where v is the superelliptic “square-
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ness” parameter, and z is a variable describing the proximity of the re-
flection point to the pole, or zero-curvature point. The transition function
T(z,v) does two things near the pole; it acts to correct the GO singularity,
and it furnishes an aperture-like oscillatory pattern behavior. As v gets
large and the surface around the pole flattens, this aperture effect becomes
more and more pronounced. In the limit of infinite v, a [-‘-"-3—"] type of
pattern is expected.

The results of Chapter 5 explored two aspects of T(z,v). First, the
limiting case of Hg, - T(z = 0,v) is examined. This result is expressed
in terms of the Gamma Function and corresponds to an evaluation of the
field reflected from the pole itself for arbitrary v. Second, T(z,v = 3) is
expressed in terms of Incomplete Airy Functions. T(z,v = 3) is associated
with the reflected field both near and far from the pole, but only for the
superellipse whose v = 3.

The general function T(z,v) cannot be expressed in terms of known
functions, but it is hypothesized that the general transition function ac-
counting for the distributed current effects around the pole may be con-
structed heuristically, based on a generalization of the integral form of the

Incomplete Airy Function, i.e.

F(qg,v) = /(; > (e””‘ + e'j"') &% dt (5.89)
=2[ % dt. :
2 /o cos(nt)e’~ d (5.90)

The full steepest-descent-path analysis is not tractable for the general case
of N merging saddle points. In spite of this, there is reason to believe that
Equation 5.90 may form the basis for a workable T'(z,v) after all.
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A comparison of the kernels of Equations 4.24, 5.10 and 5.90 reveal
that their structures are the same in the neighborhood of ¢t = 0 for all v.
It is not therefore unreasonable to suggest that Equation 5.90 is in fact
the correct canonical form on which to base the general correction T(z,v).
Further, because the integration increment dt is strictly a real quantity,
Equation 5.90 easily generalizes to all real v. The question therefore is
whether Equation 5.90 is sufficiently characteristic of superellipse behavior
to construct a simple and accurate T'(z,v), or whether other complicating
factors arise.

As v becomes large, another effect appears, which is quite unrelated
to the difficulties associated with the pole. The regions where the radius
of curvature decreases with increasing v develop into sharp corners. In
these regions, GO is valid provided that the smallest radius of curvature is
much larger than the wavelength. A natural transition from the mechanism
of reflection over to diffraction must be incorporated into the solution to
achieve full generality for large v on electrically small cylinders. Some
pertinent results concerning reflection by surfaces with electrically small

radii of curvature are found in [4].
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Chapter 6
NUMERICAL RESULTS

This chapter presents the numerical data for the reflected field from vari-
ous superelliptic cylinders, calculated by the various methods of GO, UGO,
PO, and MoM. First, results for reflection from the pole are presented, then
results for reflection near and far from the pole for ¥ = 3 cylinders are
presented. The curves display the different scattering mechanisms and/or
artifacts contained in the various methods. Whenever possible, an inter-
pretation of the results will be pointed out in the discussions accompanying
the graphs.

With regard to efficiency, it is worth noting that in Table 6.1, the UGO

a=b=1) | a=b=3\ | a=b=5)A | a=b=10) | a=b=30A
GO 88s 83s ATs 128 83s
UGO| 314s 169 1248 8.25s 518
PO 36.1s | 1.8 min. | 3.2 min. | 6.0 min. 18 min.
MoM | 1.7 min. | 4.8 min. [ 9.5 min. | 32 min. > 4 hrs.

Table 6.1: Comparative CPU times in VPU (VAX 780 Processing Units)
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solution for electrically large cylinders is more than two orders of magnitude
faster than Physical Optics, and more than three orders of magnitude faster
than the Method of Moments. Further, the UGO solution is the only
method whose computation time decreases as the scatterer gets larger. This
phenomenon is due to the asymptotic behavior of the transition function
T(z,v = 3); it is easier to compute for large arguments. While GO is also
very efficient, it does not produce a uniformly valid result around the pole.

The slight variations visible in the GO CPU times reflect the variabilities
and inefficiencies which exist in a multiuser computer environment. The
actual computations were performed on a VAX 8550 running the VMS
operating system. Each entry in Table 6.1 represents 90 backscattered field

computations for a v = 3 superquadric cylinder.

6.1 Reflected Fields from the Pole for Arbi-
trary v

The basic asymptotic result concerning the backscatiered field from the
pole is given by Equation 5.26. This equation is a Physical Optics approx-
imation of the reflected field from the pole, neglecting the second-order
effect of creeping waves, and excluding false PO current terminations. The
backscatter field for various types of superellipsoids is plotted versus v in
Figure 6.1. Should future research produce a general reflection transition
function T'(z, v}, Equation 5.26 will be useful as a check on the small argu-
ment z limit of T(z,v), since 5.26 is valid for all v.

Figure 6.1 illustrates that the UGO solution provides a smooth tran-
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sition from (\/Ji) type of behavior which is characteristic of a circular
cylinder, to a (2a) behavior which is representative of PO scattering from
a strip. On the left side of the figure, where v = 2, the backscattered field
of a circular cylinder as a function of radius is seen by the intersection of
the curves with the leftmost y-axis. The \/;E behavior is evident. On
the right side of the figure, as v gets large, the field approaches that of
the backscattered field from the broad side of a rectangular cylinder. As a
function of radius, the intersection of the curves with the rightmost y-axis
shows the 2a behavior expected from a flat aperture. Because Equation
5.26 is only valid for the backscattered field from the pole, Figure 6.1 does

not provide inforrm;.tion about the field pattern away from the pole.
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Figure 6.1: Backscattered field from the pole for different radii as a function
of v.
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Figure 6.2: Echo width/ma from the pole as a function of radius.
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Figure 6.3: Echo width/mra from the pole as a function of radius.
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In Figures 6.2 and 6.3, the PO results of Chapter 4 for the TE polariza-
tion are displayed on a magnified scale, normalized against the asymptotic
results of Equation 5.26 and Figure 6.1. Since the data were generated
using numerical integration, the endpoint effects of the false PO termina-
tion currents make themselves visible by the observed periodic oscillations.
Note that the endpoint effects diminish both as the radius increases and as
v increases. Also note that the scales represent 0.2 dB fluctuations which
accentuate this effect.

The decrease of the endpoint effects with increasing radius is a statement
of the fact that, with valid assumptions about the PO currents and the
surface reflection mechanism, a PO result approaches GO in the limit of
infinite frequency. Analytically, PO endpoint contributions usually decrease
as O(1/k), where the stationary-phase terms are typically O(1).

The decrease of the endpoint effects with increasing v is a more subtle
effect, but is easily explained. When v is large, the cylinder is approxi-
mately a rectangle but not exactly. The current terminations do not occur
at the corners, as in the case of an actual rectangle, but the constant-phase
radiation region of the surface does end there. Instead of an abrupt current
termination, there is a rapidly fluctuating phase and gradually decreasing
current amplitude on the top and bottom sides of the rectangle. This gen-
erates a much smaller false return than a current termination immediately
adjacent to the constant-phase large-amplitude face of the rectangle.

The validity of Equation 5.26 is indirectly confirmed by the fact that
the curves for all v tend toward zero dB with increasing radius. If Equation

5.26 were inaccurt ie, then it would not normalize the numerical integration
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to unity (0 dB). Also, if all endpoint effects were subtracted out, then all
the curves should lie flat on the zero dB line, without oscillation. Again,
it must be noted that the amplitude scale in both Figure 6.2 and 6.3 has

been greatly exaggerated to display the termination current artifacts.

6.2 Reflected Fields from v = 3 Superelliptic
Cylinders

This section presents data for the backscattered fields from superquadric
cylinders of v = 3. Here, the fields are investigated for reflection points
both near and far from the pole, and several methods are plotted together
for comparison. Unless otherwise noted, the Method of Moments results
are for the TM polarization, in order to minimize the effect of creeping
waves around the cylinder. Figure 6.5 is the exception, which shows both
the TM and TE results using the Method of Moments.

The data are plotted as (echo widths)/wa. This means that the data are
normalized to the 2-D echo width of an infinite circular cylinder of radius
a. Figure 6.4 shows the backscattered field as a function of the angle from
the x-axis for a cylinder of radius a/A = b/A = 1. .

The GO result is significantly different from the other curves in virtually
all regions, and it is the only curve that is unbounded. Note that the UGO
and the PO results are almost indistinguishable around the main beam.
The UGO and the Method of Moments differ by less than 1/2 dB over the
entire angular range. It is worth noting that a/XA = /) = 1 is the worst

possible case, where the various mechanisms and effects such as creeping
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waves and false PO returns are most significant. When the electrical size
of the cylinder increases, then UGO and the other methods converge. This
includes GO when the reflection point is far from the pole. (Section 5.5

and Equation 5.87 define “near” and “far” from the pole.)
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Figure 6.4: Echo width/ma as a function of 8 = &', (a/A = b/A = 1).
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Normalized Echo Width (dB)
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Figure 6.5: Echo width/xa, showing both TM and TE polarizations.
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Normalized Echo Width (dB)
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Figure 6.6: Echo width/ra as a function of 8 = @', (a/A = b/ = 3).
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Figure 6.7: Echo width/xa as a function of # = &', (a/A = b/A = 5).
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Figure 6.8: Echo width/ra as a function of 8 = ¢, (a/A = b/) = 30).
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In Figure 6.5, at the pole, the TM polarization via Method of Moments
is 1/2 dB below the UGO, whereas the TE polarization via MoM is 1/2 dB
above the UGO figure. Slight discrepancies are also noticeable around the
45 degree mark. The TE case should show stronger creeping wave effects
for small radii. This could explain part of the discrepancy. Higher order
terms in the asymptotic analysis could also account for these effects. In
any case, the comparisons are quite close considering the small amount of
deviation, thereby, validating the results.

The differences between PO and UGO in Figures 6.4 and 6.6 - 6.8
can be explained by the termination current artifacts present in the PO
solution, which are absent in the UGO. The UGO solution then, is the
pure reflection mechanism, inasmuch as the PO can accurately model the
primary radiating (stationary-phase) currents on the surface.

As the radius increases, the adverse effects diminish and the UGO result
proves to be very accurate indeed. Figure 6.6 shows that for a/A = b/) = 3,
the UGO and TM-MoM results differ by less that 0.2 dB over the entire
angular range. Larger radii cases in Figures 6.7 and 6.8 show even closer

agreement between the various methods.

58

}



Chapter 7

SUMMARY AND
CONCLUSIONS

Superquadric surfaces have points of zero curvature at which GO incor-
rectly predicts an infinite reflected field. The actual reflected field is finite
and is well approximated by the method of Physical Optics. Rather than
simply employ PO, however, a correction to the GO solution is constructed
via an asymptotic analysis of the PO formulation for the reflected field. The
purpose of the asymptotic analysis is to achieve an improvement over PO
by avoiding the false returns associated with the truncation of currents at
shadow boundaries and by avoiding numerical integration over electrically
large bodies. In the spirit of UTD then, the goal is to retain the advan-
tages of GO in terms of calculation efficiency and analytic simplicity while
simultaneously enjoying the accuracy and physical insight afforded by the
Physical Optics, hence the uniform GO, or UGO solution.

The numerical results of Chapter 6 show excellent agreement between
the UGO solution developed here and the Method of Moments. There is
also excellent agreement between Physical Optics and the Method of Mo-
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ments, validating the inital assumption that PQ is a good way to describe
the reflection mechanism. In most of the regions where PO and the Method
of Moments disagree, the corrected GO solution more closely agrees with
the Method of Moments. This reveals that the UGO solution avoids the
false current termination effects which afflict the PO result. One exception
to this is when the Method of Moments includes a significant higher order
scattering mechanism in addition to the reflected field, such as the creeping
wave. In this case, the UGO solution does not include this effect.

Finally, the issue of scattering by superellipses in three dimensions is
suggested as an interesting area for future research. This would be the next
natural step toward making superquadric surfaces into a viable electromag-

netic modeling tool.
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Appendix A

COMPLETE AND
INCOMPLETE AIRY
FUNCTIONS

The Airy Functions satisfy a second-order differential equation known as
Airy’s Differential Equation A.2,A.3,A.23. The integral solutions of these
equations are known as Airy integrals and their properties are well known.
The structure of the Airy integrals is such that they are characteristic of the
arbitrary interaction of two saddle points, and in the case of the incomplete
Airy integral they describe the interactions of two saddle points with an
endpoint of integration.

This appendix presents the definitions and asymptotic forms of the com-
plete and incomplete Airy functions. While the Complete Airy Functions
are not a part of the solutions presented in Chapter 5, they are used in
the numerical evaluation of the Incomplete Airy Functions. Asymptotic

formulas for the Airy integral are given in [1].
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A.1 Complete Airy Functions
A.1.1 Integral Representation

The Complete Airy functions Ai and Bi are defined as

Ai(n) = 1 / e(nz-‘:-)dz = 1 ea'(n-+‘,3)d,

12‘"_1. L s ,21r Iy s (A.l)
; - (m-%) g, — _2_./ J(ne+4%)
Bi(n) 2x -/L,+L; e e 2r Jia+Ls ¢ d

where the contours L, ; 3 are shown in Figure A.1.

Z-PLANE

Figure A.1: Contours of integration for the Complete Airy functions
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A.1.2 Differential Equations

Ai"(2) - zAi(z) = 0.

Bi"(z) - 2zBi(z) = 0.

A.1.3 Series Representations

Ai(z)
Bi(z)
f(2)

(2]

C3

e f(2) — ea9(2)
V3[e1f(z) + cag(2)]

£r0).
ko ‘3/4(3k)!
1o 14, 1:4:7,

3
T+g et g 2t

isb(_2_> zah*}'l
k=0 3 k(3k+1)!
2., 25, 2.58
T R T T

1

R

(3c+1)(3c +4) -+ (3a + 3k — 1)

Where a is arbitrary and k = 1,2,3,---

Ai(0) = Bi(0)/v3 = 3-%/3/1(2/3)
0.355028053887817

—Ai'(0) = Bi'(0)/v3 = 3-V*/T(1/3)
0.258819403792807
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(A.4)
(A.5)
(A.6)

(A.7)

(A.8)

(A.9)
(A.10)

(A.11)

(A.12)

(A.13)




A.1.4 Large Argument Forms

for |largz| < m,

) 27HY g & Y F(3k+';') 2 s —k
A(z) ~ gz ,,{_:o( Y i+ ) (3’ )

for largz| < Z,

. i:l_{: +3§2212 ol k I‘(3k+%) 2 3/2 -k
Bi(z) ~ —e ,2‘“1) 54%kIT(k + 1) (5’ )

A.1.5 Relations between Solutions

Bi(z) . e+i'/°Ai(zej”/3) + e—jw/nAi(ze-,-:,/z) -0
Ai(z) + eizwlaAi(zejhla) + e—jhlaAi(ze~jh/3) =0
Bi(z) + e"’*/sBi( ze-"""/a) + e‘j"laBi( z e-j:1r/3) =0

2 Ai(ze*3"/%) = e*427/3 [Aj(z) + Bi(2)]
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(A.15)

(A.16)
(A.17)
(A.18)
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A.2 Incomplete Airy Functions

The Incomplete Airy functions are defined as

1 wei'i . 3
Gin,B) = é;.[s. M) gy §=1,2,3
ot (A.20)
= -2—1];'_]: iB = e(m—‘;)dz
i
0S¥ <3, FE<¢<wm, -Eys<-32 (A.21)

where the ooe’¥ and f; correspond to the endpoints of the S-plane paths

L; shown in Figure A.2. The contour L; may be deformed onto the positive

Z-PLANE S-PLANE

Figure A.2: Contours of integration for the Incomplete Airy functions

real axis in the S-plane to yield the following representation of Gy, denoted
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by A1

Ki(n,8) = G:(m.8) = 5= [

® et ) gy = _1_ oo

(nz—‘?—)
2ni J; sldz. (A.22)

A.2.1 Differential Equation

[3‘2; — Jaﬂ] Ai(z2,8) = (A.23)

A.2.2 Large Argument Forms

Agsume that § > 0 and z >> 0.

Ai(z,p8)
K;( -, ﬂ)

where
g(s)
g'(s)
g"(s)
9(0)
g'(0)

g"(o)

~t

j ei(}8*+eB)

w Atz '
1

——e_-’g.

a2 [ -z

ﬂ_ 2s
ds 21—z

= [s(e) ~ tg°(s)] (A.26)

= ') - 3t°(s) — ags)] (A.27)
1
pr

1

T3
5

1227/4
3 1/2
(F-0+3)

+s, for £ (8 — z'/?)

B +z>>0 (A.24)

3/2
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A.2.3 Relations between Solutions

Gi(n,8)
Ga(n,0)

Ai(n)
Gl(ne”z"/s, 5)
Ga(ne ™1, )
Gz(qe+5h/3’ B)
Ga(ne™3*12, §)
G s(ne+.1'k/3, B)
Ga(ne™3*%, B)

Gi(m,B) — Ai(n)

Gi(n,8) — 3 [Ai(n) + 7Bi(n)]
Ga(m,B) + 5 [Ai(n) — 7Bi(n)
Gi(mB) + Gi(n", )
e’j"”‘G’g(q, ﬂe-hi"/f’)
e+i21rlaga(,,, ﬂe"'"’“)
e-,'zw/aga(n’ 8 e+jzw/3)
e+:'2w/3gl(n’ ﬁe—jzwla)
e“j"/aG’l(n, ﬁeh’h/s)

e+j21r/3Gz(,” ﬂe—ihla)
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(A.28)
(A.29)

(A.30)
(A.31)
(A.32)
(A.33)
(A.34)
(A.35)
(A.36)
(A.37)




Appendix B
COMPUTER PROGRAMS

This appendix contains the various computer programs used to calculate
the reflected fields from the superelliptic cylinder. Some of the Airy func-

tion subroutines were contributed by M. C. Liang.

PROGRAM UNIFORM GO
This program calculates the reflected field from the superellipse using Uni-
form GO, or UGO.

options /extend_source
program go

This program calculates the G0 backecattered field from a
superellipse.

- eww vem e

parameter pi = 3.1415692664
real theta, rc, Hgo, a, b, knu, area, Refpnt, zs, zc, t, tp

real x, xxx
complex transition
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external r.c, tramnsition

Refpnt(theta) = atan(sign(abs(
+ ((b/a)**knu) *tan(theta) ) *+(1/(knu-1)) ,tan(theta)))

Hgo ( theta ) = sqrt ( r.c( Refpnt(theta), a, b, knu )/2 )
knu = 3.0

type*, ’Input a’
accept*, a
b=a

do theta=-4b5, 45, .9956
]

| Calculate [ x=sigma*k(2/3) ]
!
t = abs(theta * pi/180)
tp=t
zs = (b » gin((t+tp)/2) ) == (3./2.)
zc = ( a * cos((t+tp)/2) ) =»* (3./2.)

xxx = z8*%*(2./3.) * ( 2*cos((t-tp)/2) /
+ ( zs + zc )»x(1/3.) )*=(2/3.)

xxx = min ( xxx*(2#pi)**(2/3.), 24.0 ) ! bug in airy function
! for large arguments

area = Hgo( theta*pi/180 ) ! * cabs ( transition(x) )

area = area*s»2 * 2+pi / ( pi * a )

vrite(6,*) theta, area

end do

end
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SUBROUTINE RC
This subroutine calculates the radius of curvature at a point on the surface
of a superelliptic cylinder.

options /extend source

real function RC( phi, a, b, knu )
real phi, s, ¢, knu, a, b

real sa, ca, saml, caml, sam2, cam2

8 = abs( sin(phi) )
c = abs( cos(phi) )
sa = g *% knu

ca = ¢ &% knu

sami = g ** (knu-1)
cami = ¢ »» (knu-1)
sam? = g »+ (knu-2)
car? = ¢ ** (knu-2)

RC = ( ((a*+knu)*sami)**2 + ((b**xknu)*cami)**2 )*»(3./2.) / (

+ (knu-1) =*
+ (axb)w««(knu-1) * ( (a*s)*xknu+(b*c)*xknu )**(i+1/knu) *
+ (8xc) **(knu-2) )

return

end

FUNCTION TRANSITION

This subroutine calculates the value of the transition function T'(z).

options /extend.source
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*!

complex function Tramsition ( argument )
complex iai, j, z

external iai

real pl, argument

parameter ( pi = 3,1416926564, j=(0.,1.) )

z = iai( 0.0, +argument )
+ iai( 0.0, -argument )

z = conjg(z) * 2 * sqrt(pi) * (abs(argument)#*»(1./4.))
* exp( -j»2./3.+(abs(argument)**(3./2.)) + j*pi/a )

Transition = z
return
end
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PROGRAM POLE BACKSCATTER
This program calculates the backscattered field from the pole of a superel-
liptic cylicer.

program super ellipse pole

integer n

real k, c, a, x, ¥y, pi, gamma, btan2, knu, fact, deriv

complex i, j/(0.,1.)/

pi = 3.141592654
k=2»*pi

type*, ’input a’
acceptx, a

do knu=2.0, 20.0, .1
deriv = - 2 + gamma( knu ) ! -2(alpha-1)!

i = gamma(1/knu) * 2/knu *

+ (-gamma (knu+1)/(derivsj»k+a))**(1/knu)
+ * cexp(jrk*2*a)
+ * csqrt(j*k/(2%pi)) * a

WRITE (6,*) knu, cabs(i), btan2(aimag(i),real(i))*180/pi, i

end do

END

real function gamma(x)
integer i
Teal x, fact
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call gmma ( x, fact,
gamma = fact

return

end

i)
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PROGRAM PHYSICAL OPTICS
This program was used to calculate the Physical Optics reflected field from
the superelliptic cylinder.

OFTIONS /EXTEND_SOURCE

PROGRAM BISTATIC PO

INTEGER PIECES, I, N, MAXPNTS

Teal btan2

external btan2

COMPLEX*i6 C, J, H, 2z

real phase

REAL»8 PHI, LOW, HIGH, RE.R, IM_H, RE_RESULT, IM_RESULT, lambda

REAL*8 FMIN, FMAX, FSTEP, F
REAL+8 PI, A, V, K, L, U, H.NORM, ¢ in, amax, NORM.B, ONE, CDABS

COMMON A, PHI, J, K, V
EXTERNAL RE.H, IMH
phase(z) = btan2( dimeg(z), real(dreal(z)) )+180/pi

ONE = 1.0000000000000000
J = (0.,1.)
PI = 4 » ATAN (ONE)

TYPE*, ’'Input the observation angle (degreei)’
ACCEPT#, PHI

TYPE+, 'Input the cylinder radius (meters)’
ACCEPT=*, A

TYPE+, ’Input the frequency range [low,high,step] (Ghz)’
ACCEPT*, fmin, fmax, fstep

TYPE+, 'Input the superelliptic parameter (knu)’
ACCEPT», v
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- ) () = e cm

.

phi = phi #» pi/180
fmin = fmin » 19
fmax = fmax » 1e9
fstep = fstep * 1e9

Loop through several frequencies.
maxpnts = nint( (fmax-fmin)/fstep )
WRITE(3,*) maxpnts, real(fmin/1e6), real(fstep/1e6)
DO N=1, MAIPNTIS + 1

Change some parameters for sach point.

A= ( (N-1)*»(amax-amin) /MAXPNTS + amin )
PHI = ( (N-1)»(pi/2)/MAXPNTS + -pi/2 )

f = ( (N-1)+(fmax-fmin)/MAIPNTS + fmin )
lambda = 299 792 837.1 / ¢
k=2 »*pi /( lambda )
¢ = 2 » CDSQRT((j*k)/(8*PI))
Calculate the point.

HIGH = PI/2+ATAN( ABS(TAN(PHI))**(1/(V-1))

+ +SIGN(-OKE,SIN(PHI)) )
LOW = HIGH - PI
H= (0.,0.)

PIECES = 2 # NINT( A/lambda )
. D0 I=1, PIECES

L = (I-1) « ((HIGH - LOW)/PIECES) + LOW
U=] » ((HIGH - LO¥)/PIECES) + LOW

Integrate the real and imaginary parts of H due to J.

CALL DQG32( L, U, RE_H, RE_RESULT )
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CALL DQG32( L, U, IMH, IM_RESULT )
H = H + CMPLX(RE_RESULT, IM_RESULT)

END DO
H=H+*C=* 4

! Normalize the result against the GO result.

NORM.H = A » PI
H.NORM = 2 * PI » CDABS( H )*»2 / NORM.H
!
! Output the data to a file and notify the user of progress.
'
WRITE(3,*) 20%logiO(cdabs(H)), phase(h)
TYPE*, N, ’ of ', MAXPNTS, ® f=’, f/1e9, ’ h=’,
+ 20*log10(real (abs(h.norm)))

END DO

CALL STATISTICS
END
1
! These functions compute the real and imaginary parts of H.
!
REAL#8 FUNCTION RE.H ( X )
REAL*8 X, AMP_NUMER, PHASE NUMER, PHASE.DENOM, AMP_DENOM
REAL*»8 PHI, A, S, C, V, TMP, IMH, X
COMPLEX*16 J
COMMON A, PHI, J, K, V
LOGICAL REAL /.FALSE./

REAL = .TRUE.
! The real and imaginary parts are very similar.

ENTRY IMH ( X )
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S = SIN(X)
C = C0S(X)

Calculate the numerators of the amplitude and phase functionms.

AMP_NUMER = SIN(PHI)*(SIGN(ABS(S)»#(V-1),S)) +
+ COS(PHI)*(SIGN(ABS(C)**(V-1),C))
PHASENUMER = 2 * ( C » COS(PHI) + S » SIN(PHI) )

Build the denominators of the amplitude and phase functions.

TMP = ( ABS(S)**V + ABS(C)*xV )
PEASE_DENOM = TMP*»(1/V)
AMP_DENOM = PHASE DENOM = TMP

Now combine the functions.

IF ( REAL ) THEN
RE.H = (AMP.NUMER/AMP_DENOM) »
+ COS( K+As(PHASE_NUMER/PHASE.DENOM) )
ELSE
IMH = (AMP_NUMER/AMP_DENOM) »
+ SIN( K+*A*(PHASE_NUMER/PHASE DENOM) )
END IF

Asume imaginary unless the real entry point was taken.

REAL = .FALSE.
END

79




SUBROUTINE CDQG32

This subroutine performs a complex double-precision Gaussian quadrature
numerical integration on a given function.

x4

*!

*! This is a complex double-precision 32-point gaussian quadrature
*! integration routine. It integrates the function FUNC on a strait

*! line in the complex plane from ZL to ZU.
*1
* -
DOUBLE COMPLEX FUNCTION CDQG32 ( ZL, ZU, FUNC )
DOUBLE COMPLEX FUNC, FCT, Y, ZL, 2V
DOUBLE PRECISION 4, Ci, C2, C3, C4, C5, C6, C7, C8, C9, C10

DOUBLE PRECISION Cii, C12, Ci3, C14, Cib, C16, Ci7
DOUBLE PRECISION X, Bi, B2, B3, B4, B5, B6, B7, B8, BS, BioO

DOUBLE PRECISION B11i, Bi2, B13, Bi4, B15, B16, B17
PARAMETER ( A = 0.5D0 )

PARAMETER ( C1 = .49863193092474 DO )
PARAMETER ( C2 = .492805755677263 DO )
PARAMETER ( C3 = .48238112779376 DO )
PARAMETER ( C4 = ,467453037968868 DO )
PARAMETER ( Cb = .44816057788302 DO )
PARAMETER ( C6 = .42468380686628 DO )
PARAMETER ( C7 = .39724189798397 DO )
PARAMETER ( C8 = ,36609106937014 DO )
PARAMETER ( C9 = .33152213346510 DO )
PARAMETER ( C10 = .293865787862038 DO )
PARAMETER ( Ci1 = .25344995446611 DO )
PARAMETER ( C12 = .210675638065631 DO )
PARAMETER ( C13 = .16593430114106 DO )
PARAMETER ( C14 = .11964368112606 DO )

( )

PARAMETER ( Cib6 = .07223688079139 DO
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CDQG32 = (ZU-ZL) * Y
RETURN

END

*1




FUNCTION INCOMPLETE AIRY

These functions compute values for the Incomplete Airy functions.

complex function iai ( b, x )

complex iaip, ibi, ibip, zi, 22, z3, z4
real b, x

call aiinc ( b, x, z1, z2, 23, z4 )

iai = z1

return

entry iaip

call aiinc ( b, x, z1, 22, 23, z4 )
iaip = 22

return

entry ibi

call aiinc ( b, x, z1, z2, 23, z4 )
ibi = z3

return

entry ibip

call aiinc ( b, x, z1, z2, 23, z4 )
ibip = z4

return

end

SUBROUTINE AIINC(BETA,XS,AII,AIIP,AIH,AXHP)
COMPLEX AII,AXIP,FCT,FINT,CJ,CJP4

COMPLEX AIH,AIBP,ATEM(1001),ATMP(1001)
COMPLEX GI,GIP,HI,HIP,AI,AIP,BI,BIP
COMPLEX CT1,CT2,CT3,CT4,CTH

COMMON/ERR/ERR1 ,ERR2,ERR3 ,ERR4

c
c APRIL 17, 1986
c TR T R T S TR P L L LR R DL DAL T LR L DTS D D L Lt d T Sl L)
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*  THIS SUBROUTINE IS USED TO CALCULATE THE INCOMPLETE AIRY

»*

=  FUNCTION AND ITS DERIVATIVES, THE FUNCTION IS DEFINED AS

*

*  AII(B,S)=INT(B,INF,FS) *»
* AIIP(BS)EINT(B,m?,c:Jn-'rtps) *
*  FS=EXP(CJ#(T#*3/3+S*T))/TPI *
*  NOTE THAT THE AIRY FUNCTION AI IS DEFINED AS »
*  AI(S)=INT(-INF,INF,FS) *

a0 202 sk e o e a0 e 2k e o a9 e e o 00 3090 afe o o o i o 38 0 00 o 00 3 30 30 0 3 ol o 3¢ o 2 a0 o 3 90 o e o ol ot o ol o o o ol ok o o

TARG=1: SMALL NEGATIVE ARGUMENT OR POSITIVE ARGUMENT FORM;
WITH BETA >>1
=2: LARGE NEGATIVE ARGUMENT FORM( IS <<0);
USING THE FRESNEL INTEGRAL (ASYMPTOTIC FORM)
=3: SMALL NEGATIVE ARGUMENT OR POSITIVE ARGUMENT FORM;
WITH 0< BETA <<1
=4: EVALUATE THE INTEGRAL FORM; AIINC(B,S)=AIINC(0,S)
-INT(0,B,FS); WHERE FSGEIP(CJ*(O.33#?*T*T+S*T))/TPI

ICOM=1: IF BETA < 0 ; IN THIS CASE TAKE THE COMPLIMENTARY
PART OF AII(BETA,XS);
I.E. AII=ATI(XS)-AII.*_(ABS(BETA),XS)
=0: IF BETA > O .

PI=3.141569265369
TPI=2.*P1
Cl=(0.,1.)
CT1=-CJ*PI/4.
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CJP4=CEXP(CT1)
QPI=SQRT(PI)
BET1=ABS(BETA)

ICOM=0
IF(BETA.LT.0.)ICOM=1
IARG=4
T1=BET1+BET1+XS
IF(T1.GE.18.)IARG=1
IF(BET1.LE.ERR4) IARG=3
IF(XS.LE.-7.)IARG=2
CALL GIHI(XS,GI,GIP,HI,HIP,AI,AIP,BI,BIP)
ATH=0 . 5% (AI+CJI*GI)
AIHP=0 5+ (AIP+CJ*GIP)

GO TO (100,200,400,400) IARG
CONTINUE

THIS IS THE LARGE BETA FORM; WITH SMALL NEGATIVE IS OR
LARGE POSITIVE IS

CT1=CJ* (BET1+BET1+BET1/3.+IS*BET1)

CT2=CEXIP(CT1)

BBS1=1./(BET1+BET1+IS)

BBS2=BBS1+BBS1

BBS4=BBS2+BBS2

CT3=CJ#BBS1#(1.-(10.+BET1#BET1~2.%1S)*BBS4)
CT4=BBS1*BBS2#2.#BET1%(1.-16,%(3.*BET1+BET1-XS)*BBS4)

CT4=BBS1*BBS2%2 . +BET1
AII=(CT3+CT4)»CT2/TPI

CT3=CJ*BBS2»(-1.+BBS4*(652.¢BET1#BET1~8.*I1S))
CT4=BBS4%6 . #BET1+(~1.+(110.#BET1+BET1-30+XS)»BBS4)

CT3=-CJ+BBS2

CT4=-BBS4+6.+BET1
AIIP=(CT3+CT4)*CT2/TPI+CI*BET1#AII
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GO TO 900
CONTINUE

THIS IS THE ASYMPTOTIC FORM FOR LARGE NEGATIVE IS;
IN THIS CASE THE FUNCTION IS APPROXIMATED BY FRESNEL
INTEGRAL

THE LARGE ARGUMENT IS DECIDED TO BE USED FOR XS< -7.;
IN THIS CASE THE ERROR IS ABOUT 0.3% FOR BETA=0.

ABXS=ABS(IS)

SAXS=SQRT (ABXS)
SSAX=SQRT (SAXS)
DEPS=BET1-SAXS
CT3=-CJ+2 . #ABXS*SAXS/3.
CT4=CEXP(CT3)

BRANCH INTQO LARGE AND SMALL ARGUMENT FORMS
IF(ABS(DEPS) .GT.0.03)G0 TO 250
SMALL ARGUMENT FORMS

Ti=1.+DEPS/(6.%*SAXS)-DEPS*DEPS/(72.%ABXS)

DEBTA=T1*DEPS#SSAX

DEBTA2=DEBTA*DEBTA

CT1=CJ*DEBTA2

CT2=CEXP(CT1)

CT1=QPI*(0.7070106781,0.7070106781)
FINT=0.5+CT1-DEBTA-0.33333334»DEBTA*DEBTA2%CJ
Ti=1.-0.626+DEPS/SAXS+0.3402777778+DEPS*DEPS/ABXS
CT5=-0.6%CT2#T1*CJ/ (ABXS*»3.)
AII=CT4#((1.+CJ*0.10416666667/(SAXS*ABXS) )*FINT/SSAX+CT6) /TPI

T2=1.-0.4376+DEPS/SAXS+0.409722222+DEPS+DEPS/ABXS

CT6=T2%CT2/(3.#3AXS)
AIIP=CT4+((CJ+0.1458333333/(SAXS*ABXS))*8SAX*FINT-CT5) /TP
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GO0 TO 900

c

c LARGE ARGUMENT FORMS

c

250 GEO=1./SSAX
T1=BET1*BET1*BET1/3.+4XS«BET1+2.%SAXS*ABIS/3.
DEBTA=SQRT(T1)
IF(BET!1.LT.SAXS)DEBTA=-DEBTA

c GEBTA=GEO

c T1=BET1+BET1+XS

c IF(ABS(T1) .GE.0001)GEBTA=2.*DEBTA/T1
GEBTA=2 . #DEBTA/ (BET1#BET1+IS)
DEBTA2=DEBTA*DEBTA
CALL FCTX(1,FCT,DEBTA2)
CT1=CJI*DEBTA2
CT2=CEXP(CT1)
CT1=QPI*(0.7070106781,0.7070106781)

c
FINT=0.5%CONJG(FCT)*CJ*CT2/DEBTA
IF(DEPS.LT.0.)FINT=CT1+FINT

c
CT5=0.5%CJ* (GEBTA-GEO) /DEBTA*CT2
AII=CT4*((GEO+CJ*0.10416666667+*SSAX/ (ABXS*ABXS) ) »FINT+CT5)/TPI

c o
CT6=(BET1/(BET1*BET1+XS)-0.5%SSAX/DEBTA) *CT2
AIIP=CT4»((CI*SSAX+0.1458333333/(SSAX*ABIS) ) *FINT-CT5)/TPI
GO0 TO 900

c

€300 CONTINUE

c BET2=BETA*BETA

c BET4=BET2+BET2

c BET8=BET4+BET4

c XS2=XS*XS

c XS4=XS2#XS2
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T1=BET1-BET1*»BET2*(BET4/126.+XS*BET2/15.+X52/6.)
T2=BET2*(BET2/12.40.5+XS)-(BET4/12.)* (BET4*BET2/136+

$ XS*BET4/12.+XS2+#BET2/3.+X5%XS2/2.)
T3=(BET1*BET4/6.)*(BET8/4212.+XS*BET2*BET4/297 .

$ +XS2#BET4/54.+XS*XS2+BET2/21.+X54/20.)+T1
AII=ATH-CMPLX(T3,T2)/TPI
T4=-(BET1#BET2/3.) % (BET2/5.+XS) +(BET1%BET4/6.)

$ *(XS*XS2/5.+XS2*BET2/7.+XS*BET4/27 . +BET2*BET4/297.)
T5=0 . 5*BET2#(1.-BET2%BET4/72.~XS*BET4/9.~XS2%BET2#0 . 25)
ATIP=AIRP-CMPLX(T4,T5)/TPI
GO TO 900

400 CONTINUE

N3=25

IF((BET1.GE.3.) .AND.(XS.GE.0.))N3=50

NNT=BET1#N3+1

N1=NNT/2

N2=NNT-N1+2

IF(N2.EQ.O)NNT=NNT+1

IF(NNT.LE.3)NNT=3

DELT=BET1/(NNT-1)

a0 anan

DO 410 I=1,NNT
T1=DELT*(I-1)
CT1=CJ*(T1#T12T1/3.+XS+T1)
CT2=CEXP(CT1)
CT3=CJ*T1#CT2
ATEM(I)=CT2
ATMP(1)=CT3

410 CONTINUE

Ni=(NNT-1)/2
CT4=(0.,0.)
CT6=(0.,0.)
DO 440 J=1i,N1
Ji=2w%]
JiM=J1-1
J1P=J1+1
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CT4=CT4+(ATEM(J1M)+4.*ATEM(J1)+ATEM(J1P) ) *DELT/3.
CT5=CT5+(ATMP (J1M) +4.*ATMP(J1)+ATMP(J1P) ) »DELT/3.
440 CONTINUE

AII=AIH-CT4/TPI
AIIP=ATHP-CTS/TPI
900 IF(ICOM.EQ.C)RETURN

c
c ICOM=0 MEANS THAT BETA > 0;ICOM=1 MEANS THAT BETA < O.
c
AII=AI-CONJG(AII)
AIIP=AIP-CONJG(AIIP)
RETURN
END
SUBROUTINE GIHI(XS,GI,GIP,HI,HIP,AI1,AI{P,BI1,BI1P)
c
c XS: REAL ARGUMENT
C GI,GIP,HI,HIP: COMPLEX VARIABLE
c THIS SUBROUTINE IS USED TO CALCULATE THE GI,HI FUNCTION
c
COMPLEX AI1,AIiP,BI1,BI1P
COMPLEX ZS,GI,GIP,HI,HIP,AT1,AT2
DIMENSION AGT(1001),AGP(1001)
COMMON ERR1
PI1=3.14159265369
PI4=P1/4.
SQPI=SQRT(PI)
IARG=2,
IF(XS.GE.4.7)IARG=3
IF(XS.LE.-9.)IARG=1
c
C IARG=1: NEGATIVE LARGE ARGUMENT; THE SOLUTION IS OSCILLATING
c IARG=2: SMALL ARGUMENT; FOR BOTH POSITIVE AND NEGATIVE ARGUMENT
c IARGe=3: POSITIVE LARGE ARGUMENT; THE SOLUTION DAMPING FAST
c
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T1=ABS(IS)
T1=SQRT(T1)
X1S14=SQRT(T1)
XS32=T1#T1+T1
ZS=CMPLX(XS,0.)
CALL AIBI(ZS,AI1,AIiP,BI1,BI1P)
GO TO (100,200,300) IARG
100 CONTINUE
IS3=XS*XS*XS
T2=-1./(PI#XS)*(1.+2./X53+40./(XS3*XS3))
T3=1,/(PI*XS*XS)*(1.+8./X53+280./(XS3*XS3))
BI=CMPLX(T2,0.)
HBIP=CMPLX(T3,0.)
GI=BI1-HI
GIP=BI1P-BIP
RETURN
200 CONTINUE
IF(ABS(XS).NE.0.)GD TO 250
GI=CMPLX(0.2049765642478,0.)
GIP=CMPLX{0.149429462449,0.)

HI=2.%GI
HIP=2, »GIP
RETURN
250 CONTINVE
¢
c THE INTEGRAL IS CALCULATED USING THE DEFINITE INTEGRAL 0 TO AUG
c AND THEN ADD UP THE REMAINDER FROM THE REST OF THE INTEGRAL
c USING ASYMPTOTIC EVALUATION
C
AUG=4,

IF(XS.GE.3.)AUG=6.
IF(XS.LE.~3.)AUG=2.
AUG2=AUG*AUG
DELT=0.01
NNT=AUG/DELT+1
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DO 280 I=1,NNT
XIT=(I-1)*DELT
ARG=~XT*XT#XT/3.+XS*XT
T1=EXP (ARG)
AGT(I)=EXP(ARG)
AGP(I)=XT=EXP(ARG)
280 CONTINUE
Ni=(NNT-1)/2
T2=0.
T3=0.
D0 290 J=1,N1
J1=2%]
J1M=J1-1
J1P=J1+1
T2=T2+(AGT(J1M)+4.#AGT(J1)+AGT(J1P) )»DELT/ (3.+PI)
T3=T3+(AGP(J1M) +4 . *«AGP(J1)+AGP(J1P))*DELT/ (3.#PI)
290 CONTINUE
T4=XS*AUG-AUG*AUG2/3.
T6=EXP(T4)
XSTT=1./(XS-AUG2)
IST2=XSTT#XSTT
XST4=XST2+1IST2
T7=TE*XSTT#(-1.+2.*AUG*XST2-(2.+XS+10.+AUG2)*XST4) /PI
T2=T2+T7
TO=TE+XST2+(1.-6. *AUGHXST2+(8.#XS+52. »AUG2) #IST4) /P1
T3=T3+4.+T7+T8
EI=CMPLX(T2,0.)
HIP=CMPLX(T3,0.)
GI=BI1i-HI
GIP=BI1P-HIP
RETURN
300 CONTINUE
XIS3=XS*IS*XS
T2=1./(PI*XS)*(1.+2./X53+40./(XS3+183))
T3=-1./(PIsXS#XS)#(1.48./X83+280./(XS3+XS3))
GI=CMPLX(T2,0.)
GIP=CMPLX(T3,0.)
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ARG=2.%XS32/3.
T4=EXP(ARG)
T6=T4/(SQPI*XS14)
T6=T4»XS14/SQPI
HI=CMPLX(T5,0.)
BIP=CMPLX(T6,0.)
RETURN

END
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SUBROUTINE FCTX(ID,FCT,X)

COMPLEX FXX(8),FX(8),CJ,FCT

DIMENSION XX(8)

DATA PI,TPI,SML/3.14159265,6.28318631,0.001/

DATA IX/.3,.5,.7,1.,1.5,2.3,4.,6.5/

DATA CJ/(0.,1.)/

DATA FX/(0.5729,0.2677),(0.6768,0.2682),(0.7439,0.2549),
1(0.8095,0.2322),(0.873,0.1982),(0.9240,0.1677) ,(0.9668,0.1073),

2(0.9797,0.0828)/

DATA FXX/(0.,0.),(0.6195,0.0025),(0.3366,-0.0665),
1(0.2187,-0.07567),(0.127,-0.068), (0.0638,-0.0506) ,
2(0.0246,-0.0296),(0.0093,-0.0163)/

IF(X.GT.5.5)G0 TO 1

IF(X.GT.0.3)G0 TO 10

ID=1 DIFFRACTION COEFFICIENT FI
ID=2 SLOPE DIFFRACTION COEFFICIENT FXS

SMALL ARGUMENT FORM
FCT=((1.253,1.263)*SQRT(X)-(0.,2.)*»X-0.6667+X«X)*CEXP(CJ*X)

IF(ID.EQ.2) FCT»2.#CJ+X#(1.~FCT)
RETURN

LINEAR INTERPOLATION REGION

DO 11 N=2,7

IF(X.LT.XX(N))GO TO 12
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12 FCT=FXX(N)*(X-XX(N))+FX(N)
IF(ID.EQ.2) FCT=2.#CJ#X*»(1.-FCT)
RETURN

crie LARGE ARGUMENT FORM

1 IF(ID.EQ.1) FCT=1.+CMPLX(-0.75/X,0.5)/X
IF(ID.EQ.2) FCT=1.+CMPLX(-3.75/X,1.5)/%
RETURK
END
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FUNCTION COMPLETE AIRY
These functions compute values for the Complete Airy functions.

complex function ai ( z )

complex z, aip, bi, bip, z1, z2, 23, 24
call aibi ( z, z1, z2, z3, z4 )

ai = z1

return

entry  aip

call aibi ( z, z1, 22, z3, z4 )
aip = z2

return

entry bi

call aibi ( z, z1, z2, z3, z4 )
bi = z3

return

entry bip

call aibi ( z, z1, 22, 23, z4 )
bip = 24

return

end

SUBROUTINE AIBI(Z,AI,AIP,BI,BIP)
COMPLEX Z,AI,AIP,BI,BIP
IF(CABS(Z).GT.6.)G0 TO 12
CALL AIBI1(Z,AI,AIP,BI,BIP)
RETURN
12 CALL AIBI2(Z,AI,AIP,BI,BIP)
RETURN
END
SUBROUTINE AIBI1(Z,AI,AIP,BI,BIP)
C THIS PROGRAM CALCULATES THE AIRY FUNCTIONS AI(Z),BI(2),
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C AND THEIR DERIVATIVES AIP(Z),BIP(Z).
C REF. ABRAMOWITZ AND STEGUN, HANDBOOK OF MATHEMATICAL FUNCTIONS.

C FOR CABS(Z) .LE. 6.0 ,A TAYLOR SERIES IS USED.
C  ARG(Z) MAY TAKE ANY VALUE. SEE (10.4.2) TO0 (10.4.5) .
COMPLEX Z,AI,AIP,BI,BIP
COMPLEX*16 F,G,FP,GP
DOUBLE PRECISION CC1,CC2
DATA S3,CC1,CC2/1.732060808, .355028053887817, .268819403792807 /

CALL FZGZ(Z,F,G,FP,GP)
AI=CC1*F~CC2*G
AIP=CC1#FP-CC2*SP
BI=S3%(CC1#F+CC2%G)
BIP=S3%(CC1#FP+CC2%GP)
RETURN
END
SUBROUTINE F2GZ(Z,F,G,FP,GP)
C THE AUXILIARY FUNCTIONS F(Z),G(Z),FP(Z),GP(Z) ARE COMPUTED AS IN

C  "TABLES OF THE MODIFIED BANKEL FUNCTIONS OF ORDER ONE-THIRD AND
C OF THEIR DERIVATIVES" ,COMPUTATION LAB, HARVARD UNIV. PRESS,19456.

COMPLEX*168 F,G,FP,GP,Z3,Z3M,ZD
COMPLEX 2

REAL»8 AM,BM,CM,DM,40,B0,C0,D0
REAL ZMBD(S5)

INTEGER MAX(5)

DATA ZMBD /6.1, 5.6, 4.8, 4.1, 3.2 /
DATA MAX /22, 19, 16, 14, 11 /
ZD=0.D0

ZD=Z

A0=1.DO

B0=1.D0

C0=0.5D0

DO=1.D0

1)




Z3=(ZD*#3)/200

Z3N=23

ZMAG=CABS(Z)

D0 3 M=1,6
3 IF(ZMAG .LE. ZMBD(M))MADMAX=MAX(M)

F=A0

G=B0

FP=C0

GP=D0

DO 10 M=1,MADMAX

TM=FLOAT(3%M)

AM=200.DO*A0/TM/ (TM-1)

BM=200.D0*B0/TM/ (TM+1)

CM=200.D0*CO/TM/ (TM+2)

DM=200.D0*D0/TM/ (TM-~2)

F=F+AM*Z3M

G=G+BM*Z3M

FP=FP+CM+*23M

GP=GP+DM#*23M

Z3M=Z3M*23

A0=AM

BO=BM

C0=CM

DO=DM
10 CONTINUE

G=ZD*G

FP=(ZD##2)»FP

RETURN

END

SUBROUTINE AIBI2(XX,AI,AIP,BI,BIP)
C THIS PROGRAM CALCULATES THE AIRY FUNCTIONS AI(XXI),BI(XX),
C  AND THEIR DERIVATIVES AIP(XX),BIP(XX).
C REF. ABRAMOWITZ AND STEGUN, HANDBOOK OF MATHEMATICAL FUNCTIONS.

COMPLEX Z,AI,AIP,BI,BIP,XX

COMPLEX 225,2TB,2T,2T2,273,2T4,ZTH
COMPLEX CT1,42L2,EIPI3,EIPI16,C,S
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DATA RTPI,TWORPI,RTOP,POF

% /1.772453851,3.644907702, .797884561,.786398164 /
DATA A2L2,EIPI6,EIPI3

% /(0.,.346573690),(.866026404,.5),(.5,.866026404) /
DATA C1/.069444444/,C2/.037133487/,C3/.037993069/,

% C4/.057649190/,C5/.116099064/

DATA D1/-.097222222/,D2/-.043885030/,D3/-.042462830/,

% D4/-.062662163/,D56/~.124106896/
ZTB=(2./3.)%XX*%1.6
ARG=ATAN2(AIMAG(XX) ,REAL(IX))
IF(ABS(ARG) .GE.2.1) GO TO 100

C EQN. (10.4.59),(10.4.61)
Z25=XX**, 25
ZT=ZTB
ZT2=2T*ZT
ZT3=ZT2#2T
ZT4=ZT2*ZT2
ZT5=ZT3+ZT2
CT1=CEXP(-ZT) /TWORPI
AI=CT1/Z25%(1-C1/ZT+C2/2T2~C3/ZT3+C4/2T4-C5/ZT5)
AIP=-CT1%226%(1-D1/ZT+D2/ZT2-D3/ZT3+D4/ZT4-D5/2T5)
IF(ARG.LT.0.)G0 TO 20
ZT=(0.,-1.)*ZTB
C EQN. (10.4.65),(10.4.68) WITH UPPER SIGNS.
Z=XX/EIPI3
CT1=ZT+POF-A2L2
BI=EIPI6
BIP=1./EIPI6
GO TO 30
20 2T=(0,,1.)%ZTB
C EQN. (10.4.65),(10.4.68) WITH LOWER SIGNS.
Z=XX+EIPI3
CT1=ZT+POF+42L2
BI=1,/EIP16
BIP=EIPI6
30 S=CSIN(CT1)
C=CC0S(CT1)
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225=7#4%.2b

2T2=ZT»ZT

ZT3=72T2+2T

ZT4=2T2#»2T2

ZT6=ZT3*ZT2
BI=BI*RTOP/Z25*(S*(1-C2/2T2+C4/2T4)-C*(C1/ZT-C3/ZT3+C5/ZT6))

BIP=BIP*RTOP#Z25% (C»(1-D2/ZT2+D4/2T4)+S*(D1/ZT-D3/ZT3+D5/2T6))

RETURN
100 ZT=(0.,1.)*ZTB
C EQN. (10.4.60),(10.4.62),(10.4.64),(10.4.67)
IF(ARG.LT.O0.)ZT=-2T
Z=-XX
Z2b=Z#»%.2b
ZT2=ZT+ZT
ZT3=2T2+2T
ZT4=ZT2*2T2
ZT5=ZT3+2T2
CT1=ZT+POF
S=CSIN(CT1)
C=CCOS(CT1)
AI=1./RTP1/226+(S#(1-C2/2T2+C4/2T4)-C*(C1/ZT-C3/ZT3+C6/ZT6))

AIP=-225/RTPI#(C*(1-D2/ZT2+D4/2ZT4)+S*(D1/2T-D3/2T3+Db/ZT6))
BI=1./RTPI/Z26%(C*(1-C2/ZT2+C4/ZT4)+S*(C1/ZT-C3/ZT3+CH/ZT5))
BIP=226/RTPI*(S*(1-D2/2T2+4D4/ZT4)~C*(D1/ZT-D3/2T3+D6/ZT5))

RETURN
END
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